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Abstract Personalised environments such as adaptive educational systems can be
evaluated and compared using performance curves. Such summative studies are useful
for determining whether or not new modifications enhance or degrade performance.
Performance curves also have the potential to be utilised in formative studies that can
shape adaptive model design at a much finer level of granularity. We describe the use
of learning curves for evaluating personalised educational systems and outline some
of the potential pitfalls and how they may be overcome. We then describe three studies
in which we demonstrate how learning curves can be used to drive changes in the user
model. First, we show how using learning curves for subsets of the domain model can
yield insight into the appropriateness of the model’s structure. In the second study we
use this method to experiment with model granularity. Finally, we use learning curves
to analyse a large volume of user data to explore the feasibility of using them as a
reliable method for fine-tuning a system’s model. The results of these experiments
demonstrate the successful use of performance curves in formative studies of adaptive
educational systems.
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1 Introduction

Adaptive educational systems such as intelligent tutoring systems (ITS) have user
modelling at their core. Developers of such systems strive to maximise their effi-
cacy through intensive evaluation and enhancements. ITS are complex and have many
aspects that may affect learning performance, including the interface, pedagogy, adap-
tive strategies and the domain and student models utilised. Of these aspects the domain
and student model are very important because they drive all other aspects of the sys-
tem. Depending on the approach used the student model may be invoked for some
or all of diagnosis, problem selection, feedback or hint selection/generation, argu-
mentation, error correction and student performance evaluation. The student model
is typically derived in some way from the domain model, e.g. an overlay, where the
student model is considered a subset of the domain model, or a perturbation model,
where it additionally contains some representation of the student’s buggy concepts
(Holt et al. 1994).

Performance (summative) analysis of adaptive educational systems—such as ITS—
is hard because the students’ interaction with the system is but one small component
of their education. Pre- and post-test comparisons provide the most rigorous means of
comparing two systems (or comparing a system to pen-and-paper), but in order to be
statistically rigorous they require a significant number of students and a sufficiently
long learning period. The latter confounds the results unless it can be guaranteed that
the students do not undertake any relevant learning outside the system being measured.
Typically studies are conducted in a much more controlled manner, such as within a
single session spanning 1 or 2 h. With such evaluations useful results can be obtained
but the effect size tends to be smaller. In such cases other differences may be found
in how students interacted with the system, but they may be too little to give a clear
test outcome, e.g. Ainsworth and Grimshaw (2004) and Uresti and Du Boulay (2004).
In contrast, Suraweera and Mitrovic (2004) did find significant differences between
using their ITS (KERMIT) versus no tutor in a short-term study, but such a result
appears rare.

Because of the lack of clear results researchers often measure other aspects of their
systems to try to find differences in behaviour. However, these do not always mea-
sure learning performance specifically, and the results are in danger of being biased
(e.g. Uresti and Du Boulay 2004; Walker et al. 2004; Zapata-Rivera and Greer 2004).
Finally, many studies include the use of questionnaires to analyse student attitudes
towards the system, but again student perception does not necessarily correlate with
learning gain. To date summative analysis of adaptive educational systems remains a
non-trivial problem.

We would also like to be able to analyse various components of our system and
use the results to improve its performance (formative analysis). Whilst this is theo-
retically possible using pre- and post-tests, when fine-tuning parts of an educational
system (such as the domain or student model) a large number of studies may need to
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be performed, dividing the students into many small experimental groups. Paramythis
and Weibelzahl (2005) advocate breaking an adaptive system into layers and evalu-
ating each in isolation which helps alleviate this problem, but this may fail to reveal
complex interactions between the layers. In this article we focus primarily on the
modelling layer, and in particular on the domain and student models. (An ITS may
contain other models, such as pedagogical, curriculum sequencing, etc.) However, our
approach is suitable for evaluating any aspect of the system.

In the case of adaptive educational systems the domain model can be very large
(up to thousands of knowledge components,)1 and we need to be able to fine-tune this
model to maximise learning. For example, we may wish to optimise the structure of
the domain model by measuring the performance of each knowledge component in the
model; traditional pre- and post-test analysis is infeasible because this would require
sufficient groups to isolate the effect of each knowledge component. Another possi-
bility is to plot learning curves, i.e. the error rate with respect to the number of times
each knowledge component has been invoked. Learning curves thus give us a measure
of the amount of learning that is taking place relative to the system’s model. They
can in theory be applied to any part of the model, from the entire system to individual
knowledge components, making them a promising tool for formative evaluation. They
also have the potential to enable quantitative comparisons between disparate systems.
However, there are problems with such comparisons that need to be overcome, which
we later discuss.

In this article we explore learning curves as an evaluation tool and conduct several
experiments that seek to determine whether they can be used to refine the design of
an ITS. The next section describes the two ITS that were used for these experiments.
Section 3 introduces learning curves, while Sect. 4 describes their use for ITS eval-
uation and explores their strengths and weaknesses. Section 5 then discusses a study
where we used learning curves in conjunction with domain model metadata to explore
whether the level of granularity of our student model was appropriate. Section 6 goes
further and explores using learning curves as a means of analysing the quality of a
domain model when large amounts of data are available. Finally, in Sect. 7 we discuss
the efficacy of using learning curves to shape ITS design and draw conclusions.

2 The experiment tutors

SQL-Tutor is an example of a practice-based ITS, which teaches the SQL database
language to university-level students. Figure 1 shows a screen shot of the tutor. For
a detailed discussion of the system, see (Mitrovic et al. 2002; Mitrovic 2003). SQL-
Tutor consists of an interface, a pedagogical module—which determines the timing
and content of pedagogical actions—and a student modeller, which analyses student
answers. The system contains definitions of several databases and a set of problems
and their ideal solutions. Constraint-Based Modelling (CBM) (Ohlsson 1994) is used

1 We use the term “knowledge component” to generalize over different knowledge representation
approaches, like schemas, constraints, or production rules (Koedinger et al. 2010) and we show how learning
curve analysis can apply despite potential differences in the details of these approaches.
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Fig. 1 A screen shot of SQL-Tutor

for both the domain and student models. Like all constraint-based ITS feedback is
attached directly to the constraints. An example of a constraint is:

(147
“You have used some names in the WHERE clause
that are not from this database.”

; relevance condition
(match SS WHERE (?* (ˆname ?n) ?*))

; satisfaction condition
(or (test SS (ˆvalid-table (?n ?t))

(test SS (ˆattribute-p (?n ?a ?t))))
; Relevant clause
“WHERE”)

Constraints are used to critique the students’ solutions by checking that the concept
they represent is being correctly applied. The relevance condition first tests whether
or not this concept is relevant to the problem and current solution attempt. If so, the
satisfaction condition is checked to ascertain whether or not the student has applied
this concept correctly. If the satisfaction condition is met, no action is taken; if it fails,
the feedback message is presented to the student.

In this case the relevance condition checks whether the student has used one or
more names in the WHERE clause; if so, the satisfaction condition tests that each
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Fig. 2 Sample screenshots of interaction with the Excel-Tutor

name found is a valid table or attribute name. The student model consists of the set
of constraints, along with information about whether or not it has been successfully
applied, for each attempt where it is relevant. Thus the student model is a trace of the
performance of each individual constraint over time.

Constraints are just one representation used for domain and student models. Cog-
nitive tutors (Anderson et al. 1995) use productions, which are intended to represent
the skills acquired by the student during learning. An example of a cognitive tutor
is Excel-Tutor (Koedinger and Mathan 2004), which teaches students to use Micro-
soft Excel. Productions are used to track student inputs to assess whether or not they
conform to a valid path or trace of the domain model. The model contains “buggy”
productions as well as correct ones, the former being used to provide specific feedback
when a student’s action matches a common error pattern. The “correct” productions
can be used to generate hints or provide an example if the student is unsure what to
do next. Figure 2 illustrates the style of interaction with this system. In this example
the student has made an error and is being tutored on how to correct the problem.

3 Introduction to learning curves

A learning curve is a graph that plots performance on a task versus the number of
opportunities to practice. Performance can be measured in several ways, with two
common ones being time taken to complete the task and probability of making an
error. In the case of a simple task such as catching a ball, the performance measure
(e.g. number of drops) is measured for the participants for each attempt, giving the
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Fig. 3 Two sample learning curves for SQL-Tutor

proportion of balls dropped for the first throw, then the second, etc. This data can then
be plotted to see how, in general, the ability to catch a ball improves with practice.
For more complex tasks, such as learning to drive a car, the task can be split up into
various skills that are likely to be learned by practice; each skill is then assessed by
measuring its performance for each opportunity to practice that skill. The resulting
data can then be plotted for each skill or, alternatively, the data can be aggregated
giving the performance of any skill as a function of the number of times it was prac-
ticed. If the task is learned with practice we expect to see a decrease in the error rate
(or time taken). Figure 3 shows examples of learning curves for SQL-Tutor; the first
curve aggregates data for all students, while the second plots the performance across
all knowledge components of an individual student. In both cases the likelihood of
incorrectly applying a knowledge component is clearly decreasing with the number
of opportunities to apply that component.

3.1 The power law of practice

Learning curves can be analysed to quantify learning performance, an idea moti-
vated by Newell and Rosenbloom (1981) who noted the existence of a “power law of
practice” with respect to time taken in trials where a single task is repeated multiple
times. The law of practice dates back to at least 1926 when Snoddy observed that when
motor tasks are repeated (in this case mirror tracing of visual mazes) there is a rapid
initial improvement in performance followed by a gradual reduction in the amount
of improvement observed (Snoddy 1926). This pattern has since been observed in
many studies. The same power law is observed in industry. For example, the cost of
producing an airplane decreases with the number of (identical) units built, presumably
as a result of the staff becoming more efficient at their tasks (Wright 1936).

Newell and Rosenbloom analysed several prior experiments where the task included
perceptual-motor skills, perception, motor behaviour, elementary decisions, memory,
complex routines and problem solving. For all of these tasks they observe that the time
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taken to complete the task decreases as a power law. Further, they report on a study
by Stevens and Savin in which performance on eight tasks is plotted using a variety
of measures including error rate as well as time (Stevens and Savin 1962). From this
analysis they conclude that the power law holds for error rate as well as time, and
that the law “holds for practice learning of all kinds” (Newell and Rosenbloom 1981).
They also considered other curves that have been used in cognitive science, namely
exponential, hyperbolic and logistic curves. Of these the most interesting is the expo-
nential, because a power law can also be considered an exponential law where the
rate of decay is decreasing over time. They tested each curve by subjecting the raw
data from many experiments to an appropriate transformation function such that the
expected result would be linear (e.g. log–log for a power law, log-linear for exponen-
tial curves). By observing any systematic error in each curve they concluded that the
power law provided the best fit.

The formula for a power law is:

T = B N−α (1)

where T is the performance measurement (traditionally time) and N is the number of
trials. The constant B represents the y-axis intercept, which for learning curves is the
error rate at x = 1, i.e. prior to any practice. α depicts the power law slope, equiv-
alent to the linear slope when the data is plotted using a log–log axis. This indicates
the steepness of the curve, and hence the speed with which performance is improv-
ing. Note however that, unlike an exponential curve (whose linear slope is a constant
multiple of T ), the rate of decay of the curve varies with the number of trials, i.e.

dT

d N
= −

( α

N

)
T (2)

Finally, the fit (R2) of the curve is measured to give a quantitative judgement of how
well the measured data follows a power law, and therefore the degree of evidence that
learning is taking place with respect to the unit being measured. All of these might be
used to compare two different approaches or models to determine which is better. They
can also be applied to subsets of a model to look for additional trends. For example,
Anderson (1993) uses the log–log slope (i.e. α) to compare the rate of improvement
students exhibit between “old” and “new” productions (old productions are those that
had been previously used in a lesson, versus new productions that were being used for
the first time in the current session).

3.2 Learning curves and the evaluation of education systems

We can compare student performance between two different learning systems by com-
paring the parameters of their power laws. In particular, the slope of the power law
indicates the speed with which students are improving their performance; a better
education system would be expected to result in a “steeper” power law when plotting
the average performance of all students. Second, the fit (R2) measures the reliability
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of the power law. This latter parameter can be interpreted in two ways. First, if there
is no learning taking place as a result of practice we may fail to observe a power law
because the students’ performance is essentially random with respect to the number
of times they have practiced the particular task or skill. (Alternatively we might obtain
a power law with zero slope if performance is constant over practice.) Second, a poor
power law can indicate that the performance measure we are using does not capture
what is being learned. For example, in a complex task such as computer programming
the number of syntax errors made is unlikely to decrease via a power law because
the complexity of the task will rise during a student’s session and new concepts will
be introduced. In contrast, student performance with regard to a particular skill (e.g.
writing a “main” method in Java) would be expected to improve as a power law. A high
degree of fit therefore indicates that the performance measure being used successfully
captures student learning performance. Given two alternative models of student per-
formance we can therefore generally say that the one showing the best fit is superior.
This issue is discussed further in Sect. 4. Figure 5 is an example of learning curves for
two variants of an ITS, each exhibiting a good power law. We might use slope and fit
to draw conclusions about the relative quality of the two systems.

Anderson (1993) makes extensive use of learning curves to evaluate various tutor-
ing systems in an attempt to draw conclusions about the mechanisms of learning. In the
LISP tutor he observes that not only does programming speed decrease with practice
as a power law, but the mean error rate also follows a similar function. Anderson
analysed the coding time for each individual knowledge component (“production”) in
his learning model; a regression analysis of coding time found that the strongest factor
was the opportunity, i.e. the number of times this production was applicable, and that
this relationship was log–log linear. He uses learning curves to assess both differences
in behaviour of the tutoring system (“modality”) and individual differences between
students. In particular, he asserts that the consistency of quality of the learning curves
across different tutoring conditions supports his ACT-R conception of the learning
process. In other words, the quality of the learning curves is evidence of the quality of
the model. This result was replicated for a geometry tutor where a significant log–log
relationship was observed for three different tasks (selecting premises, specifying rules
and selecting a conclusion). Further, a very important finding he reports is that learning
curves for individual productions appear to follow a power law, despite the fact that
each production is unlikely to be entirely independent. He uses this result to justify
comparing the shape of different learning curves to draw conclusions about the appro-
priateness of a model’s granularity: time taken as a function of individual knowledge
components (production rules in the ACT-R model) produces a much steeper curve
than time versus the type of inference required to solve a particular problem step
(a coarser unit of measurement), and he therefore claims the individual knowledge
components form a more accurate model. Based on this result we performed a similar
experiment (Sects. 5, 6).

From Anderson’s work we can see that learning curves can be used to analyse many
aspects of an adaptive education system. Some examples are: comparing two versions
of the same system to evaluate incremental changes; comparing two disparate mod-
elling approaches; diagnosing problems in a student model by analysing sub-compo-
nents; comparing student cohorts; comparing models for different education systems
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(e.g. to observe transfer effects or generic knowledge components). In the specific
context of ITS learning curves can be used to evaluate many functions, including feed-
back quality, feedback selection (i.e. conflict resolution when multiple errors exist),
problem selection strategy, scaffolding and model correctness. Within the wider field
of adaptive systems in general, learning curves might apply to all layers of Paramythis
and Weibelzahl’s evaluation model if we assume that practice with the system will
lead to a measurable improvement in user performance, (typically task completion
time) as a result of the user learning from the help the system gives them, the system
learning to better support the user, or both, and that each layer can potentially have an
impact on the user’s performance.

When using learning curves to evaluate educational systems we need to select an
appropriate performance measure. In the case of ITS a common approach is to mea-
sure the proportion of knowledge components in the domain model encountered by the
student that have been used incorrectly, or the “error rate” and to plot this parameter as
a function of the number of times they have had an opportunity to practice that partic-
ular knowledge component. Alternatives exist, such as the number of attempts taken
to correct a particular type of error or the time taken to apply a unit of knowledge. The
x-axis generally represents the number of occasions the knowledge component has
been used. This in turn may be determined in a variety of ways: for example, a single
time unit may represent each new problem the student attempted that was relevant
to this knowledge component, on the grounds that repeated attempts within a single
problem are benefiting from the user having been given feedback about that particular
circumstance and may thus improve from one attempt to the next by simply carrying
out the suggestions in the feedback without learning from them.

Figure 4 illustrates how power law parameters can be used to compare adaptive
educational systems. In this experiment the role of adaptive problem selection in
an intelligent tutoring system is being investigated, including the degree to which it
affects the performance of students of differing initial ability. The knowledge compo-
nents measured are the same in each group; only the method of computing problem
difficulty has been altered (static for the control, dynamic based on the student model
for the experimental group). Comparing the overall learning curve for each group
showed no significant difference. When each group is further split by ability however,
some differences emerge: For the control group, the exponential slope of the curve for
a score of 2 (medium ability) is considerably greater than for scores of 1 and 3 (low
and high ability, respectively), suggesting that the static problem difficulty is more
suited to intermediate learners than those with lower or higher initial ability, with
lower ability learners faring particularly poorly in terms of both exponential slope
and power law fit. Conversely, for the experimental group the low and medium abil-
ity curves have similar parameters, while the more advanced students demonstrate a
much higher learning speed, as evidenced by an exponential slope more than twice as
large as the other two student groups. Using the curve parameters to compare the two
conditions, the low-ability students for the experimental group have a significantly
higher exponential slope (0.44 vs. 0.11) and fit (R2 = 0.75 vs. 0.19) than the control,
suggesting more learning is taking place. The high-ability group has also improved
its slope substantially (0.93 vs. 0.45 for the control). The medium-ability group is
relatively unchanged. These difference suggest the dynamic difficulty calculation
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Fig. 4 Learning curves versus score for two versions of an intelligent tutoring system

better serves students far from the mean of initial performance, whereas the simpler
static model works for “average” students.

In the sections that follow we use learning curves to measure the performance of
ITS domain or student models. In all cases the ITS being tested is of the “learning by
doing” kind: students are presented with a problem to solve and they use the system
to develop a correct answer. The system observes their behaviour while they work
and develops a model of their ability (the student model), which records their ability
with respect to a set of knowledge components over time. The system also diagno-
ses their solution and provides feedback; the outcome of this diagnosis informs the
student model. The timing (or modality) of the diagnosis/feedback step can be either
immediate (i.e. it is carried out every time the student makes a change to the solution)
or on demand. However, the use of learning curves is much more general than this:
any system that supports a task for which user performance is expected to improve
with practice is a candidate for analysis by learning curves. In the case of educational
systems, the system might use other modes of teaching such as worked examples,
where the learning curve plots problem completion time versus exposure to examples
that introduce each knowledge component. On the other hand, an educational system
might be purely for practice and contain no specific problem to solve [for example,
simulation systems such as RIDES (Munro et al. 1997)]; the system can still diagnose
the general performance of the student with respect to best practice, and so learning
curves are still appropriate. Learning curves have also been used to evaluate educa-
tional games (Baker et al. 2007; Eagle and Barnes 2010). An interesting variation
is Nwaigwe et al. (2007), in which learning curves based on criteria other than the
domain model are analysed to try to determine which knowledge component caused
each error, and thus to build up the individual learning curves for the separate domain
model concepts.
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Fig. 5 Learning curves for two
variants of SQL-Tutor Experiment
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Data for learning curves is usually obtained post-hoc from student logs. A trace is
generated for each student (for each knowledge component) indicating the degree to
which the student has correctly applied this knowledge component over time. Each
entry may be represented by a continuous value or simply a binary flag (“success” or
“failure”). Individual data values for a single knowledge component and student are
unlikely to produce a smooth power law because they simply represent too little data.
However, the data can be aggregated in several ways to represent useful summaries:
data can be grouped for all students by knowledge component (to compare individual
elements for efficacy), by student across all elements (to compare students) or over
both for comparing different systems (e.g. two different domain models). Power law
fit and slope can then be compared between variants of the same system, different
systems, different parts of the same system or different student cohorts for the same
system. Figure 5 illustrates this: the two curves represent the learning histories for
two populations using different variants of the same ITS, SQL-Tutor (Mitrovic and
Ohlsson 1999). The curve has been limited to the first 10 problems for which each
constraint is relevant. This is necessary because aggregated learning curves degrade
over time as the number of contributing data points decreases. Both curves exhibit
a similar degree of fit and their exponential slopes are similar. However, their y-axis
intercepts are markedly different; the y-intercept indicates the initial probability of
making an error (i.e. without any feedback). The curve for the experimental group
exhibits more than double the initial error rate of the control group.

Learning curves may be used to measure various aspects of an ITS by averaging
the raw user data in different ways and comparing the slope and fit of the resulting
curves. Some prior summative evaluations we have performed are: overall learning
performance of a system; comparison of different student cohorts; feedback versus no
feedback; comparison of different types of feedback; comparison of learning perfor-
mance by ability (as measured by a pre-test) (Mitrovic et al. 2002). More generally,
learning curves can be applied to systems whose main task is not education, but rather
that of supporting a user, such as adaptive systems. For example, we would expect
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adaptive menus to result in a reduction of task time if the adaptations are beneficial.
By plotting learning curves representing task completion time versus the number of
times a menu is used we can compare alternative adaptation approaches. Within a
single system we might also measure the performance of sub-parts, such as heuristics
that perform the adaptation or individual menu items, to highlight which are the most
effective.

4 Evaluating domain models with learning curves

Whilst learning curves have been compared with one another to look for learning dif-
ferences (e.g. in Anderson 1993), there are several issues that may arise. First, what
parameters of the curve can we reliably use? Second, when are such comparisons
valid? Finally, whilst a power law appears to indicate that learning is taking place,
does it necessarily indicate optimum performance of an educational system? We now
explore these issues further.

4.1 Power law fit

The residual error of a power law can be used to determine the degree to which any
learning is evident with respect to the model; a poor model is unlikely to produce a
power law. This in turn suggests that, for two systems with different models whose
curves have comparable slope, we might use the power law fit to choose which model
is better. However, there is a potential issue: the quality of a power law tends to increase
with data set size because the influence of a single data point (i.e. single occurrence
of one student using one concept) decreases as the number of aggregated occurrences
increases. This has two consequences. First, a larger domain model and/or student
sample size is likely to exhibit a better fit than a smaller one, even if the system does
not teach the students any better. Typically learning curves plot data that is aggregated
across n students and m knowledge components, so any disparity between the two
groups of either the number of students participating or the number of knowledge
components in the model will affect the relative power law fits. Whilst it is reasonable
to control for the number of students in a sample, doing so for the number of knowl-
edge components being aggregated is more difficult because the number of knowledge
components still in use tends to decrease as the number of occurrences (i.e. the x-axis)
increases. This latter effect arises because some knowledge components will only have
been relevant for a small number of student attempts. It is tempting to try to normalise
this effect by selecting only those knowledge components that have been used at least
n times by all students, and then plot a learning curve that is cut off at x = n. However,
this may unwittingly introduce a further bias: only the knowledge components that
most commonly occur will be selected, and these may be the simplest. In practice
we have found it better to include all knowledge components and try to determine a
suitable cut off point for the curve, either by selecting a priori an acceptable reduction
in the number of occurrences being aggregated to produce each data point (e.g. 50%
of those for x = 1) or by examining the resulting curves and making a judgement call
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Fig. 6 Slope and fit versus the cut-off point for two learning curves

on where the curve appears to be deteriorating markedly. The challenge is to find a
cut off point that does not bias in favour of one experimental group over another.

For example, consider the curves in Fig. 5. In both cases the learning curves exhibit
fairly good power law fits. However, there is some deviation from a power law, particu-
larly for the experimental group, where the curve begins sharply, before rising at x = 7
and then flattening out. Figure 6 shows how the slope and fit are affected by the cut-off
point: both slope and fit are nearly the same for the two groups up to x = 6 after which
there is a marked divergence, with the experimental group showing a marked decrease
in both measures. Depending on what is being investigated an incorrect conclusion
may be drawn if the cut-off point is ill-chosen: in this case selecting for the best slope
and fit would suggest a cut-off at x = 6, but this may hide a valid difference in learning
that does not emerge until later in the learning of each knowledge component.

The problem of disparity in data volume between groups is subtle and needs to be
treated even more carefully. For example, in Koedinger and Mathan (2004) the learn-
ing outcomes associated with two types of feedback were compared in the context of
the Excel Tutor. Two versions of the tutor were created: Expert and Intelligent Novice.
In the Expert version students were given corrective feedback as soon as they deviated
from an efficient solution path. In contrast, students using the Intelligent Novice version
were permitted to make a limited number of errors and feedback and next-step hints
were restructured to guide students through the activities of error detection and correc-
tion. Learning curves were plotted and analysed to determine whether students in one
condition acquired knowledge in a form that would generalize more broadly across
problems (i.e. provide better transfer). The tutor provided opportunities to practice
six distinct types of problems. A shallow mastery of the domain would result in the
acquisition of a unique rule for each problem type, whereas a deeper understanding
of domain principles would help students to see a common abstract structure in prob-
lems that may seem superficially different (e.g., see the deep functional commonality
in copying a formula across a column or down a row even though these operations
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Fig. 7 Learning curves for six- versus four-skill models of the Excel-Tutor

have a different perceptual-motor look and feel). Consequently, students exhibiting
deeper learning would acquire a smaller set of rules that would generalize across
multiple problems. In the case of the spreadsheet tutor it was possible to use a set of
four rules to solve the six types of problems represented in the tutor. It was expected
that the Intelligent Novice version of the system would lead to deeper learning, and
thus that the learning curve for a domain model based on four knowledge compo-
nents would be superior to the curve for the original model containing six knowledge
components.

Two plots were created (Fig. 7), representing these two approaches to the underly-
ing knowledge encoding. The first assumed the student learns a unique rule associated
with each of the six types of problems represented in the tutor. Thus, with each iteration
through the six types of problems there was a single opportunity to apply each produc-
tion rule. In contrast, with the four-skill model it is assumed the student learns fewer,
more general rules, where there are multiple opportunities to practice each production
rule. Fitting power law curves to data plotted with these alternative assumptions about
the underlying skill encoding might determine whether or not students were acquiring
a skill encoding that would generalize well across problems.

The graphs for both models strongly suggest that the “intelligent novice” system
is considerably better than the “expert” version regardless of which underlying model
is used– both fit and slope are considerably higher for this variant. However, the dif-
ference between the six- and four-skill models is not so clear. For both the expert and
novice systems the slope is higher for the four-skill model, suggesting more learning
took place: this is particularly true for the “expert” system. However, in both cases
the fit (R2) decreases, and again this is more marked in the “expert” system. At first
glance these observations appear contradictory: learning is improved but quality of
the model (as defined by fit) is lower. However, the four-skill model has 33% fewer
knowledge components than the original model, so each of the data points in the curve
has been averaged over less student interactions than for the six-skill model, and we
would therefore expect the fit to degrade. This means we are unable to make compar-
isons based on fit in this case. Further, the comparisons of slope now arguably also
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become less reliable, although in this case the effect is sufficiently large that we might
still conclude that the four-skill model is superior. This latter concern could be over-
come by plotting individual student curves and testing for a statistically significant
difference in the average slopes, as described in Sect. 4.2.

4.2 Power law slope

Another potential parameter for comparing learning curves is the power law slope,
which gives some measure of how rapidly the student’s performance is increasing.
For example, we might measure the difference between two different feedback pre-
sentation modes (e.g. raw text versus a video presentation), where neither the task nor
the model has changed. However, a serious issue with the use of power law slope is
that it is highly sensitive to changes in the other parameters of the curve, particularly
the y-axis intercept, so care is needed to ensure the curves can be reliably compared.
For example, changes to average problem difficulty will make such comparisons unre-
liable; if problem difficulty is greatly increased, students may be overwhelmed and
perform more poorly. Conversely, a substantial decrease in difficulty may adversely
affect motivation.

If differences related to problem difficulty are what we are trying to measure, the
power law slope may not be the best choice. In Martin and Mitrovic (2002b), we
compared two versions of SQL-Tutor that had different problem sets and selection
strategies but were otherwise comparable. Figure 8 shows the learning curves for
the two systems trialled on samples of 12 (control) and 14 (experiment) University
students. The two curves have similar fit and slope, which might lead us to con-
clude there is little difference in performance. However, the raw reduction in error
suggests otherwise: between x = 1 and x = 5, the experimental group have reduced
their error rate by 0.12, whereas the control group has only improved by 0.7, or
about half.

Fig. 8 Two variants
of SQL-Tutor with the same
domain model but different
problem selection strategy
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The problem with using learning curve slope here is that it does not measure what
we are trying to evaluate. In this study we were looking for differences caused by an
improved problem selection strategy: if the new strategy is better, it should cause the
student to learn a greater volume of new knowledge components at a time. The power
law slope does not measure this because it measures the proportional improvement of
the initial error rate, which is more usually what we are interested in (i.e. the extent
to which the student corrected their original misconceptions), rather than the absolute
proportion of the domain model learned, which is what we would expect a change in
problem suitability to affect. In contrast the y-axis intercept does in some way reflect
this difference, because it measures the size of the initial error rate, but it does not
indicate the level of improvement observed. (Note that a discrepancy in the y-axis
intercept could also be because of differences in the students’ prior knowledge; this
possibility is obviated by a pre-test comparison.) A parameter that captures the mag-
nitude of improvement is the local slope, which is given by Newell and Rosenbloom
(1981):

dT

d N
= −αB N−α−1 (3)

We argued therefore that by comparing the local slope of the curve at n = 1, or initial
learning rate (equal to –αB), we are measuring the reduction in error at the begin-
ning of the curve; this represents how much of the domain the student is learning
in absolute terms and better represents what we would like to optimise, namely the
learning realised after receiving feedback about a knowledge component just once.
Ideally the error rate at n = 2 will be zero. For the graphs in Fig. 8 we computed the
initial learning rate, i.e. the local slope of the power curve at x = 1. This yielded initial
learning rates of 0.12 for the experimental group and 0.06 for the control group, which
correlates with the overall gain for x = 5. The advantage of using the initial power law
slope (rather than simply calculating the difference between n = 1 and n = 2 directly)
is that the former averages out variance across the x-axis while the latter is a point
calculation and is therefore more sensitive to residual error.

In the case just described we were particularly interested in the effect of changing
the selection of problems, but in general the discussion highlights that the slope of
two power laws is only comparable when the task being performed is broadly the
same, because differences in the initial error rate will have an effect. We can further
conclude that in general the slope tells us little (in absolute terms) about how well the
system is educating the student. For example, a system that presents the student with
simple, repetitive tasks might be expected to display a steep power law, whereas one
that presents harder problems (or increases the difficulty more quickly) might display
a shallower curve, even though the student is arguably learning more. This can be
illustrated with respect to the previous study: another absolute measure of learning is
the number of knowledge components learned over time. Figure 9 graphs the num-
ber of knowledge components successfully applied (averaged over all students) as a
function of the number of problems solved for each of the control and experiment
groups. The slope of the linear portion for the experimental group is 1.3 times greater
than for the control group, suggesting more is being learned per problem, even though
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Fig. 9 New constraints learned as a function of problems solved
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Fig. 10 Two examples of individual student learning curves

the power law slope for the experimental group was actually lower than that of the
control.

4.3 Reliability of comparisons

The fact that we have averaged the results across both all knowledge components and
students (in a sample group) may raise questions about the validity of the result. Fur-
ther, whilst plotting and comparing curves for two groups illustrates any difference in
aggregated performance, it does not provide any evidence of the significance of the
difference. Statistical significance can be obtained by plotting curves for individual
students, calculating the learning rates and comparing the means for the two popula-
tions using an independent samples T -test. Figure 10 shows examples of individual
student curves. In general the quality of curves is poor because of the low volume of
data, although some students exhibit high-quality curves. For the experiment described
this yielded similar results to the averaged curves (mean initial learning rate = 0.16 for
the experimental group and 0.07 for the control group). Further, the T -test indicated
that this result was statistically significant (p < 0.01). We can therefore be more
confident that the experimental group really did exhibit faster learning of the domain
model, and that this is not just a random outcome or an artefact resulting from the
averaging of data across multiple students.

123



266 B. Martin et al.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 2 3 4 5 6 7 8 9 10

Opportunity

E
rr

o
r 

ra
te

Control
Experiment

Fig. 11 Comparison of domain models with differing feedback granularity

4.4 Is a power law appropriate?

When evaluating learning curves we assume that the power law of practice holds, and
that the students’ error rate will therefore trend towards zero errors in a negatively
accelerated curve. However, there are arguably two power laws superimposed: the
first is caused by simple practice, and should ideally trend to zero, although this may
take a very long time. The second is caused by the feedback the system is giving: as
long as this feedback is effective the student will improve, probably following a power
law. However, we do not know how the effect of the feedback will vary with time: if
it becomes less effective, the overall curve will “flatten” over time and thus deviate
from a power curve. The graph will therefore appear to be a power law trending to a
y-asymptote greater than 0.

Figure 11 illustrates this point. In this study we compared two different types of
feedback in SQL-Tutor on samples of 23 (control) and 24 (experiment) second year
University students (Martin and Mitrovic 2006). Over the length of the curves the
amount of learning appears comparable between the two systems. However, the abso-
lute gain for the first two times the feedback was given (i.e. the difference in y-value
between x = 1 and x = 3) is different for the two systems: For the control group the
gain is around 0.03, while for the experimental group it is 0.05. We also notice that
the curve for the experimental group appears to abruptly flatten off after this, sug-
gesting that the feedback is only effective for the first two times it is viewed; after
that it no longer helps the student.2 We could use the initial learning rate again to
measure the early gain, but this is unlikely to be useful because of the way the curve
flattens off and therefore deviates from the initial trend. (We could cut off the curve
at x = 3 but this is dubious since it is too few data points.) In this case we used the
raw improvement as described in the previous paragraph. We obtained learning curves
for individual students and performed an independent samples T -test on the value of
error(x = 3)−error(x = 1) for each student. The results were similar to those from
the aggregated graphs (mean error reduction was 0.058 for the experimental group
and 0.035 for the control group), and the difference was significant (p < 0.01). This
suggests the difference in learning observed early in the graphs is a real phenomenon
and not a result of aggregation.

2 Possible reasons for this are discussed in Sect. 5.
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Having determined that a difference in either slope or initial slope is significant,
does it really mean anything concrete with regard to learning performance? We have
been unable to find any examples of “calibration” of learning curves, mainly because
they tend to be used as a substitute for formal testing methods (e.g. pre-/post-tests)
owing to the impracticality of their use for classroom studies. As seen in the previous
section, the number of knowledge components learned is one piece of evidence that
the effect is more than a statistical anomaly. The Excel-Tutor provides some further
evidence that learning curves reflect real effects; recall that the “intelligent novice”
interface yielded a steeper curve; the slope for this power law was around three times
that of the “expert” version. Post-test results for the two groups (after correcting for
covariate parameters of computer experience, conceptual and coding pre-test scores,
and math ability) all indicated that the intelligent novice group performed significantly
better. The ratio of test error for the two groups ranged from 1.46 to 2.95 (all in the
intelligent novice group’s favour), with an overall ratio of 1.7. All results were signif-
icant (e.g. overall performance ANCOVA: F(1,44) = 6.10, p < 0.02). This suggests
the difference in learning curves is reflected in student performance, although without
a control we have no way of determining the reliability of this inference. For further
details see (Mathan 2003).

4.5 Power versus exponential curves

As stated earlier, the power law is not the only model that has been put forward for
learning. Recently exponential curves have begun to be used by some instead of a
power law for plotting learning performance. An exponential curve has the form:

Y = Ae−Bx (4)

Heathcote et al. (2000) argue that the reason a power law is the best fit is because of
bias introduced by averaging many trials, and that when dealing with individuals and
a single problem-solving strategy an exponential curve is more appropriate. However,
for our studies we are always interested in aggregated (averaged) results; either we
are averaging learning across students, or across knowledge components, or both. The
“smallest” curves that are informative are all (or groups of) knowledge components for
a single student, or the performance of a single knowledge component across multiple
students. We would therefore expect a power law to be the better choice. We tested
this assumption by fitting power and exponential curves to the learning curves plotted
for individual students in a small study of 16 participants using SQL-Tutor. In 12 of
the 16 cases a power curve yielded a better fit. The power curve also had a slightly
better average fit (0.52, SD = 0.28 vs. 0.47, SD = 0.23) although this is not statistically
significant. Interestingly, for the four cases where an exponential curve was superior
the curves were very poor in terms of both slope and fit (R2 < 0.3 for a power law)
suggesting an exponential curve may be a better fit to poor learning evidence. This
is consistent with exponential curves being better for measuring learning gains for
a single problem solving strategy and student (which is represented by a very small
amount of data) and warrants further investigation.
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4.6 Summary

The power law parameters of slope and fit can be used for comparison but with certain
restrictions: power law fit is valid when the amount of data being compared is com-
parable; additionally, slope is appropriate only if the task being performed does not
differ significantly (and so the initial error rate is approximately the same). Finally,
neither slope nor fit measures the amount of learning taking place with respect to the
domain model; the initial local slope may be a more useful parameter for this.

Learning curves are a potentially useful tool for formative evaluation of adaptive
educational systems. In the next section we report our experiences using them to try
to both evaluate and improve the modelling performance of SQL-Tutor.

5 Using learning curves to analyse and improve domain model structure

A key to good performance in an ITS is its ability to provide the most effective feed-
back possible. Feedback in an ITS is usually very specific. However, in some domains
there may be low-level generalisations that can be made where the generalised knowl-
edge component is more likely to match what the student is learning. For example,
for the Excel Tutor previously described the smaller four-skill model was based on
the assumption that the concept of relative versus fixed indexing is independent of the
direction the information is copied (between rows versus between columns) and thus is
a better measure of what is learned than having two separate knowledge components.

Some systems use Bayesian student models to represent students’ knowledge at var-
ious levels (e.g. Zapata-Rivera and Greer 2004) and so theoretically they can dynam-
ically determine the best level to provide feedback, but this is difficult and potentially
error-prone: building Bayesian belief networks requires the large task of specifying the
prior and conditional probabilities. We are interested in whether it is possible to infer
a set of high-level knowledge components that represent the concepts being learned
while avoiding the difficulty of building a belief network, by analysing past student
model data to determine significant subgroups of a system’s knowledge components
that represent such concepts.

When analysing Excel-Tutor two substantially different models were compared in
their entirety. According to Anderson the power law appears to hold for individual
knowledge components even when they are not entirely independent (Anderson 1993).
Taking advantage of this fact, we can analyse a model’s knowledge components at a
finer granularity (than the whole model) by plotting learning curves for various subsets
of the domain model. We can then compare the resulting curves to try to determine
which groups of knowledge components appear to perform well when treated as a
single concept. For each student we maintain a log of how the student performed with
respect to each relevant knowledge component each time they submit a solution. We
can then extract all evidence for a given knowledge component to get a trace of how
the student performs over time with respect to that component, from which we can plot
a power law. However, we can also simulate the effect of substituting a single general
knowledge component for a group of the original (specific) ones as follows: extract
from the student log the evidence for any of the knowledge components of interest,

123



Evaluating and improving adaptive educational systems with learning curves 269

Tables Present 

All present None missing All referenced 

FROM WHERE FROM WHERE 

Nesting in 
Ideal solution

No nesting in 
Ideal solution

Nesting in 
Ideal solution

No nesting in 
Ideal solution

Fig. 12 Example sub tree from the SQL-Tutor domain taxonomy

then use these to create a single trace of the performance of the group of knowledge
components over time, and use this to plot a single learning curve for the high-level
concept. A good power law fit suggests a new generalised knowledge component rep-
resents some concept being learned. Further, the parameters of this curve (slope and
fit) may exceed those of the original group of knowledge components, indicating that
the generalised concept better represents what the student is actually learning. We
might further hypothesise that delivering feedback in a manner consistent with these
more general knowledge components would improve learning.

5.1 Exploring the domain model structure of SQL-Tutor

The goal of this experiment was to investigate whether we can predict the effective-
ness of different levels of feedback by observing how well a group of knowledge
components representing a general concept results in a power law, and thus appears to
measure a single concept being learned (Martin et al. 2005). To investigate this possi-
bility we performed an experiment in the context of SQL-Tutor. We hypothesised that
some groupings of knowledge components (constraints) would represent the concepts
the student was learning better than the (highly specialised) constraints themselves.
We then further reasoned that for such a grouping learning might be more effective if
students were given feedback about the general concept, rather than more specialised
feedback about the specific context in which the concept appeared (represented by the
original constraint). To evaluate the first hypothesis we analysed data from a previous
study of SQL-Tutor on a similar population, namely second year students from a data-
base course at the University of Canterbury, New Zealand. To decide which constraints
to group together we used a taxonomy of the SQL-Tutor domain model that we had
previously defined (Martin 1999). This taxonomy is very fine-grained, consisting of
530 nodes to cover the 650 constraints,3 although many nodes only cover a single
constraint. The deepest path in the tree is eight nodes, with most paths being five or
six nodes deep. Figure 12 shows the sub tree for the concept “Correct tables present”.
Whilst developing such a hierarchy is a non-trivial task, in practice this can actually aid

3 As SQL-Tutor is continually refined the number of constraints increases; as of January 2010 there are
more than 700 constraints.
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construction of the domain model (Mizoguchi and Bourdeau 2000; Suraweera et al.
2004).

We grouped constraints according to each node in the taxonomy, and rebuilt the
student models as though these were real constraints that the system had been tracking.
For example, if a node N1 in the taxonomy covers constraints 1 and 2, and the student
has applied constraint 1 incorrectly, then 2 incorrectly, then 1 incorrectly again, then
2 correctly, the original model would be:

(1 FAIL FAIL)
(2 FAIL SUCCEED)

The entry for the new constraint is:

(N1 FAIL FAIL FAIL SUCCEED)

Note that several constraints from N1 might be applied for the same problem. In
this case we calculated the proportion of such constraints that were violated. We per-
formed this operation for all non-trivial nodes in the hierarchy (i.e. those covering
more than one constraint) and plotted learning curves for each of the resulting 304
generalised constraints. We then compared the curve for each generalised constraint
to one obtained by aggregating the results for all of the participating constraints,
based on their individual models. Note that these curves were for the first four occur-
rences only: the volume of data in each case is low, so the curves deteriorate relatively
quickly after that. Overall the results showed that the more general the grouping is,
the worse the learning curve (either a poorer fit or a lower slope), which is what
we might expect. However, there were eight nodes from the hierarchy for which the
generalised constraint had superior power law fit and slope compared to the aver-
age for the individual constraints, and thus appeared to better represent the concept
being learned, and a further eight that were comparable. Whilst this may seem to
be weak evidence, it should be noted that attempting to combine knowledge compo-
nents that are unrelated in this fashion is expected to always degrade the curve. For
example, consider two completely unrelated knowledge components whose learning
performance with respect to a sample of students is identical. Combining these two
curves when the two knowledge components are alternatively exposed to the student
(the best case scenario) lengthens the x-axis by a factor of two resulting in a modest
reduction in the degree of fit and a much lower slope. If the two knowledge com-
ponents follow each other consecutively (the worst case scenario), both slope and fit
are greatly adversely affected. In contrast, if the two knowledge components in fact
represent the same concept (and therefore being exposed to either leads to the same
reduction in error for both constraints), combining them results in lower slope but
the same degree of fit for the alternating case (again resulting from the change in
scale) and has no effect on either slope or fit for the sequential case. Two or more
knowledge components can therefore be suspected of modelling the same concept
if combining their traces yields a comparable curve to that which treats them sepa-
rately.

From this result we tentatively concluded that some of our constraints might be
at a lower level than the concept that is actually being learned, because it appears
that there is “crossover” between constraints in a group. In the example above, this
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means that exposure to constraint 1 appears to lead to some learning of constraint 2,
and vice versa. This supports our first hypothesis. The results of this exploration were
sufficiently compelling to warrant researching whether we could use this information
to further improve the performance of the tutoring system. The next section describes
an experiment with feedback generality based on this analysis.

5.2 Does generalised feedback work?

Constraints are intended to model the domain at a sufficiently low level to capture
all errors a student may make and provide effective feedback to help them master the
domain. Sometimes this means the constraints will model sub-parts of a concept being
learned. The analysis of learning curves confirmed this; for some constraints learning
is better modelled as an aggregation of several constraints. Taking this one step further,
it is possible that some constraints might be modelling the domain at too low a level
to provide optimal feedback, and that, conversely, providing feedback at the more
general level would improve learning for those high-level constraints that exhibited
superior learning curves. Although the evidence was reasonably weak (just eight cases
where learning the concept represented by a node in the taxonomy appeared clearly
superior to the individual constraints) we considered this sufficient to test the hypoth-
esis that overall the domain modelling (and hence feedback) in SQL-Tutor might be
too specific (Martin and Mitrovic 2006). (In making this inference we are assuming
the low data volume explains why the evidence is not stronger.)

5.2.1 Experiment

We produced a set of 63 new constraints that were one or two levels up the taxonomy
from the individual constraints. This new constraint set covered 468 of the original
650 constraints, with membership of each generalised constraint varying between 2
and 32 constraints, with an average of 7 members (SD = 6). Note that this is not a
direct superset of the generalised constraints from the previous study. In some cases
where there was positive evidence for combining the constraints for a node at the
bottom level of the hierarchy, it appeared intuitively that the parent node would be a
feasible generalisation, and there was no evidence to the contrary (i.e. one or more
siblings also had positive evidence or, at worst, none of the siblings provided negative
evidence); in such a case we opted for the more general grouping. This is discussed
further when we analyse the results.

For each new constraint we produced a tuple that described its membership, and
included the feedback message that would be substituted in the experimental system
for that of the original constraint. An example of such an entry is:

(N5 “Check that you are using the right operators
in numeric comparisons.” (462 463 426 46 461 427
444 517 445 518 446 519 447 520 404 521 405 522))

This example covers all individual constraints that perform some kind of check
for the presence of a particular numeric operator. Students for the experimental group
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thus received this new feedback, while the control group were presented with the
more specific feedback from each original constraint concerning the particular opera-
tor involved. To evaluate this second hypothesis we performed an experiment with the
students enrolled in an introductory database course at the University of Canterbury.
Participation in the experiment was voluntary. Prior to the study students attended
six lectures on SQL and had two laboratories on the Oracle RDBMS. SQL-Tutor was
demonstrated to students in a lecture on September 20, 2004. The experiment was per-
formed in scheduled laboratories during the same week. The experiment required the
students to sit a pre-test, which was administered online the first time students accessed
SQL-Tutor. The pre-test consisted of four multi-choice questions, which required the
student to identify correct definitions of concepts in the domain, or to specify whether
a given SQL statement is appropriate for the given context.

The experimental version of SQL-Tutor was identical to the control, except feed-
back was now provided for the high-level concept instead of for the constraints them-
selves. Students were randomly allocated to one of the two versions of the system.
A post-test was administered at the conclusion of a two-hour session with the tutor,
and consisted of four questions of similar nature and complexity as the questions in
the pre-test. The maximum mark for the pre/post tests was 4.

5.2.2 Results

Of the 124 students enrolled in the course, 100 students logged on to SQL-Tutor at least
once. However, some students looked at the system only briefly. We therefore excluded
the logs of students who did not attempt any problems. The logs of the remaining 78
students (41 in the control, 37 in the experimental group) were then analysed. The
mean score for the pre-test for all students was 2.17 out of 4 (SD = 1.01). The students
were randomly allocated to one of the two versions of the system. A T -test showed
no significant differences between the pre-test scores for the two groups (mean = 2.10
and 2.24 for the control and experimental groups respectively, standard deviation for
both = 1.01, p > 0.5).

Figure 13 plots the learning curves for the control and experimental groups. Note
that the unit measured for both groups is the original constraints because this ensures
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Fig. 13 Learning curves for the two groups
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there are no differences in the unit being measured, which might alter the curves and
prevent their being directly compared as described in Sect. 4. Only those constraints
that belonged to one or more generalised constraints were included. These curves
are comparable over the range of ten observations of each constraint, and give sim-
ilar power curves, with the experimental group being slightly worse (slope = −0.57,
R2 = 0.93, compared to slope = −0.86, R2 = 0.94 for the control). However, the
experimental group appears to fare better between the first and second time each con-
straint is encountered indicating that they have learned more from the first time they
receive feedback for a constraint. In fact, the experimental curve appears to follow a
smooth power law up to n = 4, then abruptly plateaus. We measured this early learning
effect by adjusting the y-asymptote for each group to give the best power law fit over
the first four problems, giving a y-asymptote of 0.0 for the control group and 0.02 for
the experimental group.

Having made this adjustment the exponential slope for this portion of the graph
was −0.75 for the control group (R2 = 0.9686) and −1.17 for the experiment group
(R2 = 0.9915), suggesting that the experimental group learned each concept faster
for the first few problems for which it applied, but then failed to learn any more. In
contrast, the control group learned more steadily, without this plateau effect. Note that
this graph does not indicate how this feedback is spread over the student session: for
example, the first four times a particular constraint was relevant might span the 1st,
12th, 30th and 35th problems attempted. However, this is still a weak result.

Although the generalised constraints used were loosely based on the results of
the initial analysis, they also contained generalisations that appeared feasible, but for
which we had no evidence that they would necessarily be superior to their individ-
ual counterparts. The experimental system might therefore contain a mixture of good
and bad generalisations. We measured this by plotting, for the control group, indi-
vidual learning curves for the generalised constraints and comparing them to that of
the member constraints when traced individually, the same as was performed for the
a priori analysis. The cut-off point for these graphs was at n = 4, because the vol-
ume of data is low and so the curves rapidly degenerate, and because the analysis
already performed suggested that differences were only likely to appear early in the
constraint histories. Of the 63 generalised constraints, six appeared to clearly be supe-
rior to the individual constraints, a further three appeared to be equivalent, and eight
appeared to be significantly worse. There was insufficient data about the remaining 46
to draw conclusions. As mentioned earlier there is not a one-to-one mapping between
the meta-constraints of the previous study and those for the current system, however
some comparison can still be made. Of the nine that were identified in the previous
study as good generalisations, two were used again unchanged in the current study,
and the rest were represented within five more general groupings. The two that were
directly represented again had superior power laws to their constituent constraints.
Of the five more general groupings one was superior (checking the condition of the
“like” predicate”), two had insufficient evidence (checking that the FROM clause has
the required tables; checking the numeric constants of comparisons) and two were
worse (checking the presence of correct string constants; checking the presence of
correct integer constants), suggesting we were too aggressive when we generalised
the results from the initial analysis. We then plotted curves for two subsets of the
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Fig. 14 Power curves based on predictions of goodness

constraints: those that were members of the generalised constraints considered better,
the same or having insufficient data (labelled “acceptable”), and those that were worse
(labelled “poor”). Figure 14 shows the curves for these two groups.

For the “acceptable” generalised constraints the experimental group appears to per-
form considerably better for the first three problems, but then plateaus; for the “poor”
generalised constraints the experimental group performs better for the first two prob-
lems only, and the effect is weaker. In other words, for the “acceptable” generalisations
the feedback is more helpful than the standard feedback during the solving of the first
two problems in which it is encountered (and so students do better on the second and
third one) but is less helpful after that; for the “poor” group this is true for the first
problem only.

We tested the significance of this result by computing the error reduction between
n = 1 and n = 3 for each student and comparing the means. For the “acceptable” meta-
constraints the experimental group had a mean error reduction of 0.058 (SD = 0.027),
compared to 0.035 (SD = 0.030) for the control group. In an independent-samples
T -test the difference was significant (p < 0.01). In contrast there was no signifi-
cant difference in the means of error reduction for the “poor” group (experimental
mean = 0.050, SD = 0.035; control mean = 0.041, SD = 0.028; p > 0.3).

5.2.3 Discussion

There are several tentative conclusions we can infer from these results. First, gener-
alised feedback (when the generalisation is valid) may be more effective in the early
stages of learning a new concept (the first two problem instances for each concept), but
then the effect disappears, and the students actually do worse. This might because as
problems become more difficult more detail on the particular context is required, the
student having already learned how to apply the concept in general. It is possible that
a dynamic approach might work best. For example, a conservative method might be
to use generalised feedback only for the first problem (for a given concept), and then
revert to more specialised feedback. Alternatively, we might measure the performance
of each generalisation: when it appears to be losing its effectiveness the system could
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switch to specific feedback. However, the small amount of data available makes this
a difficult task. More general feedback may also increase the generality of what is
learned, thus leading to better knowledge transfer for different types of problems.

Despite the small amount of data (and thus poor quality of the curves) the learning
curves for each of the generalised concepts did appear to be predictive in some sense
(i.e. the knowledge component groupings that had the strongest a priori support pro-
duced the best results). This suggests a system might be able to tailor feedback on the
fly if it considers all of the student models when making decisions rather than indi-
vidual models. This holds promise for increased adaptability in Intelligent Tutoring
Systems, and may allow a system to quickly tailor its feedback responses to the current
student population. However, the data volume may be too small to individually tailor
feedback in this way, so other measures may need to be employed. We conducted a
study in October 2005 that compared adaptive feedback granularity with SQL-Tutor’s
standard feedback, but the results were inconclusive and further research is needed.

6 Learning curves for quality control

The presence of a power law indicates the underlying objects being measured represent
concepts being learned; the quality of the power law (measured by slope and fit) thus
gives us a measure of the appropriateness of the underlying model; if the power law
fit is poor, we are probably not modelling individual concepts being learned, although
there are other possible explanations. For example, the slip rate for learned concepts
may increase if problem difficulty rises significantly during the student session. For
example, in 2002 the first author developed and trialled LBITS (Language Builder
ITS), a constraint-based ITS for teaching spelling and grammar to middle school chil-
dren (Martin and Mitrovic 2002a). The constraints were mainly based on rules of
teaching spelling that group words according to the most important letter groupings,
such as “ough”, “ate” and “ei”. However, we also added a constraint for each letter
of the alphabet to detect when a letter was missing from the student’s answer; the
rationale was that students might be unfamiliar with certain letters that are used infre-
quently. After trialling the system on nine students we plotted the learning curve for the
system as a whole, as shown in Fig. 15a. This curve does not exhibit a power law, and
suggests that in general no learning took place. We then removed the 26 constraints
for checking the presence of the individual letters of the alphabet; the resulting curve,
Fig. 15b, is a typical power law with a good degree of fit (R2 = 0.83).

The LBITS experience shows how learning curves can be used to detect problems
with a model if the problem is sufficiently severe. It is also feasible that, given enough
data (e.g. thousands of users), we can detect individual poor constraints by plotting
curves for each constraint separately; if a constraint shows a very poor power law fit,
it is probably a poor constraint. Further, in Sect. 5.2 we inferred that if a group of con-
straints gave a better power law fit when treated as a single constraint, this probably
implied that the constraints were related sufficiently to warrant issuing a higher level
feedback message that describes some concept the group has in common. With a much
larger amount of data we might take this one step further: if a group of constraints
exhibits a significantly superior power law when treated as a single constraint, the
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Fig. 15 LBITS learning curves

Table 1 Constraint
performance

Learning evidence Number of constraints

High 123 (48%)

Low 54 (21%)

Negative 81 (31%)

existing constraints are probably too specific (i.e. they represent different views of the
same fundamental concept) and could be merged.

6.1 Analysing the SQL-Tutor domain model

SQL-Tutor has been commercialised on Addison Wesley’s Database Place website.4

At the time we captured the logs (end of 2007) more than 7,600 students had regis-
tered to use SQL-Tutor of which 3,818 had attempted at least one problem. First we
plotted learning curves for all constraints individually, plus one for each of the nodes
in the manually created hierarchy. Curves for individual constraints should resemble
a power law provided there is sufficient data. From our analysis 415 of the 673 con-
straints (62%) did not have sufficient evidence to pass any judgement, i.e. sufficient
students who used that constraint three or more times. The remaining 258 constraints
were grouped by quality into three groups (high, low and negative) as follows: Con-
straints in the high category produced a power law with a negative slope and a fit (R2)
of 0.5 or greater; those labelled low had a negative slope but a lower fit; constraints
with negative learning evidence had a positive slope, i.e. the number of violations
increased with the number of times the constraint was encountered.

Table 1 lists the number of constraints that fell into each category. On face value
these results are surprising; nearly a third of the constraints analysed exhibit negative
learning performance. However, an analysis of these constraints reveals why this is so.
First, the constraint set must act both as the model and the diagnostic rules (including

4 http://www.aw-bc.com/databaseplace.
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providing feedback), and this can be difficult to achieve. For example, it may be peda-
gogically useful to test for students using syntactic constructs in the wrong clause, e.g.
using “distinct” in places other than the SELECT clause. In the version of SQL-Tutor
analysed this constraint was always relevant5 (it is theoretically possible at any time
to make this mistake) but in the majority of cases the student would not make this
error because they would not use the “distinct” keyword at all. However, there are
some more advanced problems (i.e. those requiring unique values to be returned) for
which the probability of violating this constraint rises significantly, hence the learning
curve for this constraint has positive slope. 18 of the 81 constraints exhibiting negative
learning curves were of this type.

We can generalise this reasoning to all constraints that check for the absence of
superfluous artefacts in the solution. For example, constraint 380 checks for superflu-
ous attributes in the SELECT clause. Whilst this constraint is important for diagnosis,
it is debatable whether or not a student learns not to put additional attributes in the
SELECT clause; more likely this constraint is violated as the result of slips, which
may increase as problems become more complex. Generally speaking, whilst catch-
ing such errors is important, it is probably true to say that such constraints have a low
probability of being learned by practice. Such constraints account for 32 of the 81
constraints with negative learning performance (40%).

Another possible reason for poor constraint performance is that the constraint mod-
els more than one concept. Six of the constraints in the “poor” set tested for the presence
of all tables. Whilst this seems pedagogically valid, there is a significant difference
between problems requiring a single table and those requiring multiple. The poor
curves for these constraints suggests they may need to be further split such that con-
straints that test multiple tables are not relevant in situations where only one table is
required. On the other hand, some constraints may be more specific than the concept
being learned, and therefore be blind to other interactions that are contributing to the
learning of this constraint. For modelling purposes such constraints might need to be
merged. To test for this we repeated the analysis method of Sect. 5.2, i.e. computed
the learning curves for each node in SQL-Tutor’s manually authored constraint hier-
archy, and compared the slope and fit to that of the constituent constraints. Of the 306
nodes, just 12 exhibited power laws clearly superior to their constituent constraints,
i.e. both the slope and fit were higher than that for the individual constraints. The rest
of the hierarchy nodes either yielded similar or worse learning performance, or had
insufficient data to draw any conclusions (61 fell into this latter category).

Table 2 details the results: “Id” is the meta-constraint identifier; “Concept” sum-
marises the concept this meta-constraint represents; “Slope” and “Fit” give the power
slope and fit respectively for both the new meta-constraint and the original con-
straints; “Constraints” indicates how many of the original constraints are subsumed
by this meta-constraint. Finally, “Previous study” indicates what evidence existed for
each grouping in the original (small) study. Seven of the 12 high performing meta-
constraints were from the lowest level of the hierarchy, with a further three from the
next level up. The last two were from the third level of the taxonomy (M295 and M102).

5 This problem has since been corrected and SQL-Tutor no longer has constraints that are always relevant,
with the exception of two that check the two mandatory query clauses (SELECT and FROM).
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Table 2 Performance of meta-constraints

Id Concept Slope New (old) Fit (R2) New (old) Constraints Previous study

M272 Use of semicolon
in WHERE

−0.64 (−0.45) 0.80 (0.55) 2 –

M99 Argument of
aggregate
functions

−0.53 (−0.33) 0.92 (0.49) 5 Better slope,
worse fit

M5 More tables
(nested select
present in IS)

−0.51 (−0.27) 0.95 (0.88) 2 Better

M100 Argument of
count()

−0.50 (−0.30) 0.92 (0.42) 3 Better slope,
worse fit

M171 Comparison
operator for
string constant

−0.48 (−0.33) 0.53 (−0.26) 8 –

M296 Brackets for in,
exists, any, all
(where/having)

−0.43 (−0.33) 0.87 (0.79) 2 –

M130 Operator for
aggregate
function in
HAVING (all
same feedback)

−0.17 (−0.11) 0.73 (0.29) 3 –

M265 All atts/expr in
select (includes *)

−0.15 (+0.02) 0.74 (0.02) 4 Same

M32 Use of “=” in
comparison with
numbers

−0.12 (−0.05) 0.35 (0.08) 4 –

M303 Name
qualification
needed (each
clause)

−0.09 (+0.01) 0.65 (0.05) 6 Better slope,
comparable fit

M295 Syntax, arguments
of IN, ANY,
EXISTS, ALL

−0.36 (−0.09) 0.98 (0.80) 13 Same

M102 Need
for/superfluous
Aggregate
functions

−0.43 (−0.20) 0.89 (0.70) 12 WORSE

In some cases (e.g. M171—string constant comparison operator) the feedback from
all of the child constraints was the same, so effectively SQL-Tutor already treats all of
these constraints as though they were one concept; it is only the modelling that might
be changed to better reflect learning progress. However the domain/student model
also drives pedagogical processes such as problem selection, so combining these con-
straints for modelling purposes might improve the performance of the system overall.
In the case of aggregate functions (M102) it appears that students learn to recognise
that they need any aggregate function more than they learn to use a particular one. It
might therefore seem desirable to modify the feedback to be more general in this case,
but this could have a detrimental effect on helping students solve a particular prob-
lem, and could lead to reduced performance as seen in the previous section. Finally,
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it appears from M295 that students learn the syntax of the EXISTS, IN, ANY and
ALL predicates together, since they are conceptually very similar. This suggests these
constraints might be better grouped into one that covers all aspects of the syntax of
these predicates. Another pattern that was observed was that constraints whose only
difference was the clause they apply to performed better when grouped together as a
single constraint. For example, many constraints are duplicated for the WHERE and
HAVING clauses. It may be worth combining these constraints in some cases (e.g.
those that test for correct syntax). Another example is M303 (need to qualify attribute
names): there are six constraints covering the six clauses, but the evidence suggests
the concept of name qualification is learned independently of the clause involved.

6.2 Discussion

From this analysis it appears that the constraint set performs well, and there is not much
evidence that it should be changed, apart from a few small changes as described. How-
ever, the analysis has yielded some interesting insight into how some minor improve-
ments might be made to improve the system’s performance. The large size of the
experimental data set also allows us to determine the reliability of the results in Sect. 5.
Recall that we hypothesised that the lower two levels of the taxonomy might represent
concepts being learned better than individual constraints based on a small number of
constraints for which there was evidence of this, and we assumed the other nodes had
insufficient data to draw any conclusions. However, the Addison-Wesley data strongly
suggests this hypothesis was not well-founded: Of 135 nodes from the lowest level of
the taxonomy for which sufficient evidence was available only seven actually proved
superior to the individual constraints. This highlights the need for a sizeable volume
of data if such inferences are to be reliably made, and for caution to be exercised
when making inferences beyond effects for which there is compelling evidence. On
a more positive note, when considering just the observed evidence the results appear
reasonably robust: of the seven meta-constraints in Table 2 for which we had evidence
from both studies, four are well-supported by data from the small study, a further two
have weaker support (i.e. the previous study suggested the grouping was at least as
good as the individual constraints), and only one was contradicted. Performing the
reverse analysis, of the nine groupings with either superior slope or fit (or both) in the
small study, three showed superior performance for the large data set, a further three
showed comparable performance, one lacked evidence, and just two were found to
give worse performance in the large data set. Further, of five meta-constraints that in
the original study had the same performance as the underlying constraints, four also
showed the same performance in the large study, and the remaining meta-constraint
proved superior to the underlying constraints in the large data set. Despite the poor
quality of curves in the small dataset therefore, the results nonetheless appear to have
some consistency.

7 Conclusions and future work

As Intelligent Tutoring Systems become mature and move from the lab to the class-
room it is essential that we continue to strive to make them as effective as possible,
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and the problems are quickly found and eradicated. This requires the ability to analyse
such systems on the fly, and to draw inferences about what is working and what could
be improved. Traditional methods of evaluation such as pre-post testing are not feasi-
ble because they are too coarse-grained and take too long to run. On the other hand,
most (if not all) ITS maintain logs of student process that can be accessed at any time
without interrupting the system. Such logs typically contain a wealth of information
about learners’ performance and hence, tell us much about the performance of the
system.

Learning curves have been used for some time to perform summative evaluations
of educational systems, including comparing multiple versions of a system to eval-
uate whether new features are beneficial or detrimental to learning performance.
Used in such a way they enable developers to continually improve their systems
with some assurance that their modifications are leading to improved learning out-
comes. In this paper we have explored some of the issues surrounding learning curves
and given examples of situations where care needs to be taken to avoid spurious
results.

The ability to analyse domain model performance in detail is of great value when
building ITS. Are the knowledge components at the appropriate level of generality?
Are they correctly encoded or have errors crept in? Domain modelling is a demand-
ing task requiring a multitude of skills including the ability to not only identify the
pedagogically significant concepts of the domain, but also to correctly encode them
using whatever representation is appropriate to the modelling technique being used.
It is very easy to make mistakes when doing this (Martin and Mitrovic 2003). In
Sects. 5 and 6 we have shown how learning curves may be enlisted to check the
correctness of a domain model, not only overall but also at the level of individual
constraints. Given enough data, learning curves can be plotted on a per-constraint
basis, enabling under-performing constraints to be identified and remedied. They can
also be plotted for groups of constraints to determine whether a model’s granularity
is appropriate.

Methods have been developed to search over a space of possible alternative domain
models to find the model that best fits the learning curve data without over-fitting (e.g.
Cen et al. 2006; Pavlik et al. 2009). Given increasing availability of tutor log data (see
Koedinger et al. 2010), wider application of such discovery methods and comparison
of alternative approaches are fruitful areas for future research.

In Sect. 5 we used learning curves to evaluate the performance of a domain/student
model by measuring the apparent performance of groups of constraints that repre-
sented nodes in a (human-authored) taxonomy. This analysis suggested that some,
but not all, generalisations at the lower two levels of the taxonomy represent a single
learned concept better than the individual constraints; because some constraints may
be measuring sub-parts of a fundamental concept, rather than the whole concept, they
may be optimal pedagogically but not for the purpose of modelling student knowl-
edge. While this is useful, it relies on the quality of the taxonomy used. Further, for
many domains there is no canonical “best” taxonomy. SQL-tutor is no exception: for
example, in addition to the concepts used in the taxonomy in Sect. 5, there are other
candidate concepts that span multiple nodes in the taxonomy we used. An example
of such a concept is “multiple tables”; a problem requiring more than one table to be
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accessed potentially has implications for all of the SQL clauses. Similarly, whether or
not table columns need to be disambiguated (e.g. actor.lastname, director.lastname)
affects many of the concepts in the hierarchy used. An alternative approach is to try
to infer the best granularity of a domain from a large body of student performance
data using learning curves. We might try to find appropriate high-level concepts by
discovering groups of constraints that, when presumed to be an individual knowledge
component, result in the optimal learning curves. Unlike in Sect. 5.1 however, we
would perform a greedy search of all combinations of constraints, rather than using
those represented by the manually created hierarchy. We might also employ feature
selection methods from machine learning to reduce the search space (Witten and Frank
2005).

Finally, there is still the issue of learning curve calibration. Learning curves would
be of far greater value if differences in their parameters (slope, fit, initial slope) could
be correlated with external measures of improvement such as pre-/post-test gain. Ide-
ally a mapping would be found that is robust to differences in domain model size,
task difficulty etc. Extensive experimentation is needed in controlled conditions to
determine such a mapping, if one exists.

Formative evaluation of adaptive systems is hard but essential. We believe perfor-
mance curves are a valuable tool for analysing and improving such systems, and have
given examples from our experience using learning curves when developing adaptive
educational systems. We hope our results will be of benefit to other researchers of
adaptive systems and give them fresh ideas for evaluating their systems.
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